[Bourinet2009] | J.-M. Bourinet, C. Mattrand, and V Dubourg. A review of recent features and improvements added to FERUM software. In Proc. of the 10th International Conference on Structural Safety and Reliability (ICOSSAR’09), Osaka, Japan, 2009. |
[Bourinet2010] | J.-M. Bourinet. FERUM 4.1 User’s Guide, 2010. |
[DerKiureghian2006] |
|
[Hackl2013] |
|
[Langtangen2009] | Hans Petter Langtangen. Python Scripting for Computational Science. Springer-Verlag, 2009. |
[Lutz2007] |
|
[Jensen2007] | Jensen, Finn V. and Thomas D. Nielsen (2007). Bayesian Networks and Decision Graphs. second edition. Information Science and Statistic. Springer Publishing Company, Incorporated. isbn: 9780387682815. |
[Jordan2007] | Jordan, Michael I. (2007). An Introduction to Graphical Models. In preperation. |
[Pearl1988] | Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series. San Francisco: Morgan Kaufman Publischer. isbn: 9781558604797. |
[Pearl2000] | Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge, Massachusetts: Cambridge University Press. isbn: 9780521773621. |
[Pernkopf2013] | Pernkopf, Franz, Robert Peharz, and Sebastian Tschiatschek (2013). “Introduction to Probabilistic Graphical Models”. In: E-Reference Signal Processin. In preperation. Elsevier. |
[Stephenson2000] | Stephenson, Todd A. (Feb. 2000). “An Introduction to Bayesian Network Theory and Usage””. In: IDIAP Reseach Report 00-03. |
[Koller2009] | Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. first edition. Massachusetts: MIT Press. |
[Murphy2012] | Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. first edition. Adaptive computation and machine learning series. Cambridge, Massachusetts: MIT Press. isbn: 9780262018029. |