7. List of References

[Bourinet2009]J.-M. Bourinet, C. Mattrand, and V Dubourg. A review of recent features and improvements added to FERUM software. In Proc. of the 10th International Conference on Structural Safety and Reliability (ICOSSAR’09), Osaka, Japan, 2009.
[Bourinet2010]J.-M. Bourinet. FERUM 4.1 User’s Guide, 2010.
[DerKiureghian2006]
  1. Der Kiureghian, T. Haukaas, and K. Fujimura. Structural reliability software at the University of California, Berkeley. Structural Safety, 28(1-2):44–67, 2006.
[Hackl2013]
  1. Hackl. Generic Framework for Stochastic Modeling of Reinforced Concrete Deterioration Caused by Corrosion. Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2013.
[Langtangen2009]Hans Petter Langtangen. Python Scripting for Computational Science. Springer-Verlag, 2009.
[Lutz2007]
  1. Lutz. Learning Python. O’Reilly, 2007.
[Jensen2007]Jensen, Finn V. and Thomas D. Nielsen (2007). Bayesian Networks and Decision Graphs. second edition. Information Science and Statistic. Springer Publishing Company, Incorporated. isbn: 9780387682815.
[Jordan2007]Jordan, Michael I. (2007). An Introduction to Graphical Models. In preperation.
[Pearl1988]Pearl, Judea (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Representation and Reasoning Series. San Francisco: Morgan Kaufman Publischer. isbn: 9781558604797.
[Pearl2000]Pearl, Judea (2000). Causality: Models, Reasoning, and Inference. Cambridge, Massachusetts: Cambridge University Press. isbn: 9780521773621.
[Pernkopf2013]Pernkopf, Franz, Robert Peharz, and Sebastian Tschiatschek (2013). “Introduction to Probabilistic Graphical Models”. In: E-Reference Signal Processin. In preperation. Elsevier.
[Stephenson2000]Stephenson, Todd A. (Feb. 2000). “An Introduction to Bayesian Network Theory and Usage””. In: IDIAP Reseach Report 00-03.
[Koller2009]Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. first edition. Massachusetts: MIT Press.
[Murphy2012]Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. first edition. Adaptive computation and machine learning series. Cambridge, Massachusetts: MIT Press. isbn: 9780262018029.

Previous topic

6. Calculations

This Page